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ABSTRACT
Epidemics and pandemics have been affecting human lives since
time, and have sometimes altered the course of history. At this very
moment, Coronavirus (COVID-19) pandemic has been the defin-
ing global health crisis. Now, perhaps for the first time in history,
humanity as a whole has undergone major disruptions to life and
some form of lockdown. New policies need to be forged by policy-
makers for various sectors such as trading, banking, education, etc.,
to lessen losses and to heal quickly. For efficient policy-making, in
turn, some prerequisites needed are historical trend analysis on
the pandemic spread, future forecasting, the correlation between
the spread of the disease and various socio-economic and environ-
mental factors, etc. Besides, all of these need to be presented in an
integrated manner in real-time to facilitate efficient policy-making.
Therefore, in this work, we developed a web-based integrated real-
time operational dashboard as a one-stop decision support system
for COVID-19. In our study, we conducted a detailed data-driven
analysis based on available data frommultiple authenticated sources
to predict the upcoming consequences of the pandemic through
rigorous modeling and statistical analyses. We also explored the
correlations between disease spread and diverse socio-economic as
well as environmental factors. Furthermore, we presented how the
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outcomes of our work can facilitate both contemporary and future
policy-making.
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1 INTRODUCTION
The COVID-19 pandemic has spawned problems across different
aspects covering political [35], economical [29], social [29], psy-
chological unrest [36], and immense panic [26] across the world.
Mitigating these complex problems is a great challenge for world
leaders and policy-makers, especially considering the scale of im-
pact. In order to address these policy-making challenges and to
provide useful insights from trends of disease spread, we developed
a web-based integrated operational dashboard. Our work has two
broad goals - 1) to design and develop a user-friendly real-time
interactive dashboard, and 2) to predict future spreading of the
pandemic, while also correlating pandemic spread with different
socio-economic contexts we integrate all these in our dashboard.

Previously, transcribing raw data into information and visual-
izing them have been done for epidemics [76, 80] and pandemics
[15, 77] including COVID-19 [31, 72, 81]. Besides, environmental
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conditions and socio-economic factors such as correlation of epi-
demics and pandemics with other factors such as humidity and
temperature have been examined in previous epidemics and pan-
demics [9, 10, 37, 43, 46, 54, 68, 70]. Previous studies include long
short-term memory network (LSTM) of a recurrent neural net-
work (RNN) [84] as well as detection and prediction model based
on Twitter data [3, 6, 7, 83] for Influenza pandemic and Dengue
outbreak [57, 67]. There also exist map based [12, 87], machine
learning based [66], image processing based [1, 38], and mathemat-
ical modeling based approaches to predict pandemics [39, 73, 74].
However, in order to make robust and sustainable policies in the
case of a global pandemic, policy-makers need all the information
together from a single source having more in-depth analyses and
forecasting. Keeping this goal in our mind, we analyzed COVID-19
from different perspectives, such as social distancing, lockdown,
trend of infection rates, statistical correlation, and more [18], and
take all of them in a single platform. There exist related studies on
real-time decision-making by fitting an epidemic model to observed
and spatially-explicit infection data for the foot-and-mouth disease
outbreak, influenza outbreak, Dengue epidemic, etc., [27, 59, 60, 63].
Additionally, in recent times, there are studies that focus on policy-
making during COVID-19 pandemic [11, 75].

Going beyond, three tasks - 1) bringing sources of information
together, 2) generating other relevant information out of them, and
3) presenting all useful information in an integrated manner - are
of utmost significance for presenting data to policy-makers in an
efficient manner. However, these tasks present several research
challenges covering - 1) reliable collection of real-time pandemic
spreading data from various sources (which can be in different
formats), 2) conducting diverse analyses over different types of
data relating to pandemic, environmental factors, socio-economic
factors, etc., and 3) presenting outcomes of the analyses in an easy-
to-understand manner and in real-time for future forecasting. This
situation motivated us to create a fully functional and integrated
real-time dashboard as shown in Figure 1, which would be a one-
stop source for all such live useful information about the pandemic.

2 METHODOLOGY
Our methodology encompasses the process of collecting required
data, platform design, relevant technologies to do so, and methods
of analysis and analytics.

2.1 Methodology of System Development
The whole development architecture of the functional dashboard
web application can be divided into four specific categories - 1) data
collection, 2) analysis, 3) back end, and 4) front end (Figure 2).

2.1.1 Data Collection and Analysis. We collected global live update
from Covid19.Mathdro.id API [48], data for global prediction from
Corona-API [56] and historical data for country-wise prediction
from covid19-api.org [4]. We collected data of medical facilities
(BEDS/10M) from WHO [79], current death rate, and current ac-
tive rate from NovelCOVID API [28], humidity from Kaggle [34],
temperature, rainfall, GDP, literacy rate from DataBank [30], area,
population, and population density from REST Countries API [5].
We faced challenges during data collection bacause of the instabil-
ity of the APIs. For our analyses, we transformed the cumulative

time series data to represent the new cases of each day. We used
Microsoft Excel and Python programming language to perform pre-
processing. After performing correlation analysis and prediction
based on analytics, we pushed data into the database so that back
end team could process them to visualize onto the front end.

2.1.2 Back End. The data that we obtained from external API calls
or database query can be divided into three broad categories: (1)
constantly changing data, (2) seldom changing data, and (3) almost
constant or fixed data. We designed two types of URL routes or
API endpoints to handle these different types of data. Instead of
storing the dynamically changing data into the database, these
routes bypassed the data to the receiving end of them (category
1). At the primary level, we filtered and pushed to the database
some important data such as GDP, literacy rate, average annual
temperature and rainfall, average humidity of the countries, pop-
ulation, country codes, and country area (category 3). We have
been pushing prediction data to the database everyday (category 2).
Besides, we populate our database daily with the daily statistical
summary of COVID-19 of all countries in the world with the help
of an automated script.

2.1.3 Front End. We used React and Material-UI to develop our
user interface. We called the API routes in the respective React
Components (Charts, Tables, and Maps) to retrieve data from the
back end. We mainly used React-chartjs-3 plugin to draw the charts
to represent predictions related to pandemic, analyses of different
factors, and affects of those factors. We parameterized some of
the graphs according to country using "InputForm" of Material-
UI. We used Material-UI plugin for displaying informative tables
that show predictions and latest conditions of different countries.
There are two types of map to be displayed: 1) World Street Map
and 2) Choropleth Map for which we used React-leaflet and Esri
tile-server. World street map is necessary to visualize the country-
wise spreading and choropleth map is necessary for visualizing
spreading through other contexts such as, temperature, humidity,
population density, etc.

2.2 Analysis
We analysed the data through a process of cleaning, transforming,
and modeling them to discover useful information. Our data analy-
sis process includes trend analysis and statistical analysis methods.

2.2.1 Trend Analysis. We inspected the trend of COVID-19 affected
rate and COVID-19 death rate over time for different countries. Af-
ter collecting corresponding data from various sources [41, 42], we
fixed a range of consecutive days, ∆t . Afterwards, we fitted the
daily affected graph during this ∆t time period for a particular
country to a seventh degree polynomial f (t ) using the polyfit tool
[23]. We did the same for daily death graph. We specifically used
the degree of seven to come up with a solution of the bias-variance
trade-off [13]. We solved this trade-off by our ownmethodology.We
calculated the residual sum of squares (RSS) after fitting a country’s
daily affected graph to the polynomials of degree 2 to degree 15. We
took the average of these residuals over the selected countries. We
show these residuals in Figure 3(a). Besides, we calculated the run-
times of our overall calculations against the degree of polynomials
and took the average over the selected countries. We show these
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Figure 1: CORONOSIS - Version 3 (launched on July 20, 2020)

Figure 2: Methodology of system development in our study

runtimes in Figure 3(b). From Figure 3, it is evident that we have
to make a trade-off in choosing the degree number. Increasing the
degree can lead to the overfitting of the data [86]. Besides, there is
a clear increasing trend on the runtime graph. In order to solve this
trade-off between residual sum of squares and runtime, we took
the degree of seven. From Figure 3, the RSS trend line takes the first
flattening shape around the value of seven. Besides, the average
runtime of the calculation is also much less at the degree of seven.

We determined the first order derivative f ′(t ) of f (t ) using the
polyder tool [22]. From f ′(t ), we took the average value of affected
rate or death rate. We defined Average Rate as the mean value of the
sixth degree polynomial f ′(t ) for different equidistant values of t
taken between the range of ∆t . We selected Argentina, Bangladesh,

Brazil, Colombia, India, Mexico, Russia, South Africa, and United
States to analyse the affected and death rate.We specifically selected
these countries because these are the ones which are affectedmostly
by COVID-19 and still the infection is spreading [81]. We selected
∆t = 140 days for our calculation, from March 27, 2020 to August
13, 2020. During this time period, all our selected countries have
commonly reported significant numbers of COVID-19 cases [81].

2.2.2 Statistical Analysis. Our statistical analysis process [32, 49]
included analyzing on COVID-19 datasets to find out correlation of
spreading of COVID-19 with other contexts. We collected humidity
and temperatures data from January 22, 2020 to April 01, 2020 and
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Figure 3: Average residual and runtime for degree 2 to degree 15

for 114 countries. To find correlation between spreading of COVID-
19 and temperature/ humidity, we took country-wise daily affected
cases as dependent variable Y and maximum temperature/ humid-
ity five days prior [44] to that day as independent variable X. We
created scatter plot of the two variables to see whether there is any
existing trend or not. We calculated Pearson’s correlation, Spear-
man’s rank correlation, and Kendall’s rank correlation coefficient
using SciPy tool [19–21]. To observe a correlation with pollution,
healthcare, food security, and population tests, we used average
data of socio-economic factors and the latest data of COVID-19
cases. Our latest data for COVID-19 cases for analysis and analytics
is of August 13, 2020. Every country has one data point for socio-
economic analysis. We determined the median of correlations for
getting a worldwide overview. We collected data of 108 countries
for pollution index and 80 countries for healthcare index from Num-
beo [50]. We collected food security index data of 113 countries
from the Global Food Security Index [45]. Population tests data
is collected from Novel COVID API [28] and death rate of every
single country is calculated using the formula:

Death rate =
Total number o f deaths

Total number o f a f f ected
(1)

2.3 Analytics
Our analytics incorporated analyzing COVID-19 datasets followed
by predicting the transmission dynamics of COVID-19. We started
off with a basic compartmental model of epidemiology, the SIR
model [55]. This model breaks down the population into three
compartments; S: number of Susceptible, I : number of Infectious,
and R: number of Removed individuals. Using these compartments,
SIR predicts a contagious disease dynamics using a set of three
ordinary differential equations [55]. But this model assumes con-
stant population throughout the epidemic time. It also assumes
homogeneous mixing of people and no reinfection of recovered
individuals. Besides, the model does not take age, social mixing,
and race into consideration. To address all these issues, first we
broke down the Removed compartment into Recovered and Dead

compartments. Then, we got the basic SIRD model which could
address the difference of the recovered and dead individuals [61].

Then we interpreted the lockdown and social distancing mea-
sures. We aggregated the total population N into M = 16 groups
with respect to 5-year age interval, ranging 1-80 years. Each group
represents a class of corresponding aged individuals. We got the
total population N as follows: [71].

N =
M∑
i=1

Si (t ) + Ii (t ) + Ri (t ) + Di (t ) =
M∑
i=1

Ni (2)

Where Si , Ii , Ri , and Di is the number of susceptible, infectious,
recovered, and dead individuals of class i .

Finally, we used social contact structures among all possible
classes. We considered the social mixing patterns at home, school,
working place, and other locations [58]. Let C be the contact ma-
trix where element Ci j represents the average number of contacts
made per day by an i-class individual with j-class individuals. We
partitioned Ci j into CH

ij , CS
i j , CWij , and COij , representing the con-

tact structures at home, school, working place, and other locations
respectively. We got the element Ci j as follows.

Ci j = δ1CH
ij + δ2CS

ij + δ3CW
ij + δ4CO

ij (3)

Where δ1, δ2, δ3, and δ4 are the indicators of mixing patterns at
different places. We vary these indicators according to different
states of lockdown and social distancing [65]. Accordingly, we
present the formulation of our mathematical model.

dSi
dt

= −β
M∑
j=1

Ci j
Ij

Nj
Si (t )Ii (t ) + µNi − ΓSi (t ) + ζ (t )ΓRi (t )

dIi
dt

= β
M∑
j=1

Ci j
Ij

Nj
Si (t )Ii (t ) − (λd + λr )Ii (t ) − ΓIi (t )

dRi
dt

= λr Ii (t ) − ΓRi (t )

dDi
dt

= λd Ii (t ) − ΓDi (t ).

(4)
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Where β represents the transmission rate of infection, λr and λd
represent the recovery rate and death rate of the infected individu-
als respectively. To determine the constants (β, λd , and λr ), we ran
the basic SIRD model on the existing historical data of the corre-
sponding country. µdenotes birth rate and (Γ) denotes death rate,
making the model compatible with vital dynamics. (ζ(t)) denotes a
time dependent reinfection rate.

3 RESULTS
Analyses with the processed data lead us to some interesting in-
sights. Our analysis encompassed trend analysis, prediction analysis
for some specific countries, and some statistical tests and the results
are illustrated below.

3.1 Trend Analysis
We present our findings of trend analysis according to the method-
ology described in Section 2.2.1. Upon collecting appropriate data
from various sources [41, 42], we performed the analysis using our
numerical methods.

3.1.1 Affected Rate. We classified our selected nine countries into
three categories based on Average Affected Rate, conforming to the
Average Rate defined in Section 2.2.1. Countries having Average
Affected Rate greater than 100 are classified as High Rated, Average
Affected Rate greater than 45 but less than 100 are classified as
Medium Rated, and Average Affected Rate less than 45 are classi-
fied as Low Rated. High rated countries are United States, Brazil,
and India having 197.836, 334.190, and 463.903 Average Affected
Rate respectively. Medium Rated countries are Mexico, Columbia,
and Argentina having 45.981, 82.722, and 49.665 Average Affected
Rate respectively. Low Rated countries are Bangladesh, Russia, and
South Africa having 20.373, 38.454, and 39.952 Average Affected Rate
respectively.

3.1.2 Death Rate. Similarly, we classified the nine countries into
three categories based on Average Death Rate, conforming to the Av-
erage Rate defined in Section 2.2.1. Countries having Average Death
Rate greater than 5.5 are classified as High Rated, Average Death
Rate greater than 2 but less than 5.5 are classified as Medium Rated,
and Average Death Rate less than 2 are classified as Low Rated. High
rated countries are United States, India, and Brazil having 5.601,
6.249, and 7.566 Average Death Rate respectively. Medium rated
countries are Colombia, and Mexico having 2.298, and 5.318 Aver-
age Death Rate respectively. Low rated countries are Bangladesh,
Russia, Argentina, and South Africa having 0.269, 0.776, and 1.359,
and 1.479 Average Death Rate respectively.

3.2 Correlation with Other Contexts
As mentioned in Section 2.2.2, we find out different correlations
between COVID-19 transmission dynamics such as daily affected,
daily recovered, and daily deaths with different environmental
and socio-economic factors. To determine whether the correlation
between the variables is significant, we compared the p-value [25]
to our defined significance level. We used 0.05 as our significance
level α[24, 82].

The correlation coefficients for environmental data showed skewed
distribution, we used the median as a parameter of the overall cor-
relation coefficient of the whole world [14]. The median values
are small and positive which means, though daily affected cases
of some countries show a statistically significant correlation with
temperature, the overall impact of it on COVID-19 is negligible. The
median value of the humidity-affected correlation coefficient of all
the countries is significant and negative which means daily affected
cases of some countries show a statistically significant correlation
with humidity. If humidity increases, a decreasing trend of affected
cases is found. The overall impact of it on COVID-19 is neither
negligible nor strong enough to draw a conclusion. The results are
summarized into the Table 1.

According to our result of correlations from Table 1, we find that
the overall correlation coefficient for pollution and total affected is
negative and implies very weak relationship. Spearman’s coefficient
and Kendall’s coefficient are also very weak and unimportant [2].
Pearson’s coefficient of food security-affected correlation is positive
but weak. Spearman’s and Kendall’s coefficient values indicate that
the variables are moderately correlated [62]. The Pearson’s, Spear-
man’s, and Kendall’s correlation coefficient for healthcare index
are negative and very weak. The overall value of the population
tests-death rate correlation coefficient seems positive correlation
but too small to draw a conclusion [47].

3.3 Future Prediction
We ran our mathematical model of future prediction on different
countries by collecting affected, dead, recovered, and demographic
data [51, 64] from various sources. We predicted the number of
affected and the number of dead for the next 60 consecutive days
from the latest data.We tweaked the lockdown and social distancing
indicating parameters (δ1, δ2, δ3, and δ4) to get three different states:
Lockdown Imposed and Social Distancing Maintained, Lockdown
Released and Social DistancingMaintained, and Lockdown Released
and Social Distancing Discarded. We present our results by running
the model on Bangladesh, Brazil, India, Iraq, Mexico, Russia, South
Africa, and United States. Iraq is showing a nearly exponential
trend on the cases per day curve [81]. India and Brazil have seen
a lot of cases and their curves are still giving a positive trend [81].
Meanwhile, Mexico and Bangladesh seem to flatten their curves,
yet the infection is spreading to some extent [81]. Russia and South
Africa seem to flatten their curves by that time and was giving
a negative trend [81]. Besides, all of these countries are heavily
populated, bearing a better demographic significance than less
populated countries. Moreover, all these eight countries represent
five clusters altogether, based on the causes of death and health risk
factors [85]. We illustrate the results in Figure 4. We find that Brazil,
India, Iraq, Mexico, Russia, and South Africa will get a negative
slope in the graph within two months, if the authorities impose
lockdown and the countrymenmaintain social distancing. However,
the curve of United States and Bangladesh still remains flattened
to some extent, even after two months of imposed lockdown and
maintained social distancing.

All countries except Mexico and Russia get an exponential trend
on the graph, if the authorities release lockdown and the country-
men discard social distancing. We also measure the impacts when
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Table 1: Correlation between COVID-19 datasets and different environmental, socio-economic factors

Correlating factors Pearson’s coefficient Spearman’s coefficient Kendall’s coefficient
Range Median Range Median Range Median

Temperature and Daily Affected -0.0019 to 0.6900 0.0866 -0.0009 to 0.8023 0.0930 -0.0050 to 0.6526 0.0777
Humidity and Daily Affected -0.0093 to 0.5418 -0.4951 -0.0098 to 0.5189 -0.4366 -0.0018 to 0.4011 -0.3155
Pollution and Total Affected - -0.030 - -0.004 - 0.001
Food security and Total Affected - 0.190 - 0.502 - 0.334
Healthcare and Total Recovered - -0.062 - -0.059 - -0.045
Population tests and Death rate - 0.135 - 0.170 - 0.116

the authorities release lockdown and the countrymen maintain
social distancing. Our finding is, this is a balanced strategy. Indeed,
it has a less effective spreading impact compared to imposed lock-
down and maintained social distancing. Yet, this measure might be
the key to solve the economic crisis [53] and mental health crisis
[8] due to lockdown. We illustrate the impacts of lockdown and
social distancing on daily number of deaths in Figure 5. It almost
follows the same pattern as the affected curves.

Vital dynamics contribute to susceptible compartment with χ=
(µ− Γ)×N number of people. Since χ is mostly positive [78], it
only adds χnumbers of people to the compartment. However, it
still remains a research question [17] whether newborn babies not
inheriting COVID-19 from the mother are actually susceptible to
the virus or not. Besides, in vital dynamics, we are considering the
number of accident deaths that would happen in a normal continued
lifestyle. Although, it might compensate the numbers of unreported
deaths due to COVID-19 [88]. The reinfection parameter ζ(t) has
very insignificant effects in the results. Although we considered the
highest value of ζ(t) from the study [52], this value is very small
and bear minimum consequences. If it were significant enough, we
would get a clear oscillating trend in the graphs. However, if the
reinfection rate increases in the future due to the mutation of the
virus [89], this parameter may become significant.

3.4 Prediction Accuracy
RMSPE gives large error scores due to having outliers [33, 40] in
historical datasets. Hence, we adopted MAPE as our error measure-
ment mechanism [69]. For some countries, we found some sudden
up or down to the number of affected and death cases and reduced
the effect of these outliers by omitting them. We calculated the
absolute differences of COVID-19 cases of consecutive days and
summed up the differences. After that, we took the mean of these
and checked whether the individual difference is greater or equal
to 1.65 times of mean or not [16]. If the difference of the values
met up the benchmark, we marked it as an outlier and omitted the
second date from the calculation. For instance, the absolute differ-
ence of affected cases for India of June 10, 2020 and June 09, 2020 is
10,523. The mean of absolute differences between these consecutive
affected cases is 2,482. 1.65 times of 2,482 is 4,095 and 10,523 is
greater than 4,095. Therefore, we marked the data of June 10, 2020
as an outlier and ignored the data. We did the same calculations
for both 1-day and 2-day prediction, and for death cases as well.
MAPE includes division of deviated value by the actual value. As
division by 0 causes the error measurement to be undefined, we

ignored those cases where the value of actual cases is 0. We found
some negative value from the data source and we cut off the value
forcefully to 0 as negative number of affected cases does not make
any sense. Ignorance of these values caused a reduction in data
points. We did our error calculations on 80%, 82%, 89%, 85%, 81%,
80%, 84%, and 84% of data for Bangladesh, Brazil, India, Iraq, Mexico,
Russia, South Africa, and United States respectively. The values of
average percentage error of 1-day prediction and 2-day prediction
for Bangladesh, Brazil, India, Iraq, Mexico, Russia, South Africa,
and United States are illustrated in Table 2.

We performed error measurements on death cases prediction val-
ues for Bangladesh, Brazil, India, Iraq, Mexico, Russia, South Africa,
and United States. As mentioned earlier, we did some preprocessing
to reduce outliers, zero numbers of cases, and negative numbers
of cases. We did our error calculations on 80%, 80%, 91%, 82%, 80%,
80%, 79%, and 80% of data for Bangladesh, Brazil, India, Iraq, Mexico,
Russia, South Africa, and United States respectively. The values of
error of 1-day prediction and 2-day prediction for death cases for
Bangladesh, Brazil, India, Iraq, Mexico, Russia, South Africa, and
United States are illustrated in Table 2.

4 CONCLUSION AND FUTUREWORK
Effective policy-making is considered to be the most important
task during the COVID-19 pandemic, as it determines the overall
functionality of a region during and after the pandemic. An im-
portant basis of effective policy-making is insightful data, which is
even more important in the case of a pandemic due to its spanning
over the spatio-temporal domains. Accordingly, in this work, we
focused on how to provide authentic and reliable comprehensive
data to policy-makers. To do so, we explored correlations between
the pandemic spreading and a number of different socio-economic
and environmental contexts. Besides, we demonstrated a robust fu-
ture prediction of the pandemic over different regions of the world
in different time frames. We presented outcomes of all the work
in an integrated manner in our newly-developed dashboard. Our
study is completely data-driven. However, due to insufficiency and
unavailability of some crucial data, we could not make our work
more comprehensive. For example, we were in a great dearth of
sophisticated hospitalization data, lockdown schemes, and schedule
data, asymptomatic patient data, data of innate immunity against
COVID-19, etc. We could make our prediction model more robust
using these data. In future, we aim to perform such a more rigorous
study.
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Figure 4: Prediction of daily number of affected for the next 60 days from the data as found on August 13, 2020
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Figure 5: Prediction of daily number of deaths for the next 60 days from the data as found on August 13, 2020
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Table 2: Average percentage error scores for 1-day and 2-day predictions

Country Affected Dead
1-day prediction 2-day prediction 1-day prediction 2-day prediction

Bangladesh 12% 14% 26% 25%
Brazil 36% 42% 29% 33%
India 12% 12% 19% 20%
Iraq 7% 10% 13% 14%
Mexico 24% 25% 41% 45%
Russia 6% 6% 20% 21%
South Africa 22% 24% 38% 40%
United States 14% 16% 40% 46%

Avg = 17% Avg = 19% Avg = 28% Avg = 31%
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